|
@@ -0,0 +1,805 @@
|
|
|
|
+#ifndef DARKNET_API
|
|
|
|
+#define DARKNET_API
|
|
|
|
+#include <stdlib.h>
|
|
|
|
+#include <stdio.h>
|
|
|
|
+#include <string.h>
|
|
|
|
+#include <pthread.h>
|
|
|
|
+
|
|
|
|
+#ifdef GPU
|
|
|
|
+ #define BLOCK 512
|
|
|
|
+
|
|
|
|
+ #include "cuda_runtime.h"
|
|
|
|
+ #include "curand.h"
|
|
|
|
+ #include "cublas_v2.h"
|
|
|
|
+
|
|
|
|
+ #ifdef CUDNN
|
|
|
|
+ #include "cudnn.h"
|
|
|
|
+ #endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef __cplusplus
|
|
|
|
+extern "C" {
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#define SECRET_NUM -1234
|
|
|
|
+extern int gpu_index;
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ int classes;
|
|
|
|
+ char **names;
|
|
|
|
+} metadata;
|
|
|
|
+
|
|
|
|
+metadata get_metadata(char *file);
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ int *leaf;
|
|
|
|
+ int n;
|
|
|
|
+ int *parent;
|
|
|
|
+ int *child;
|
|
|
|
+ int *group;
|
|
|
|
+ char **name;
|
|
|
|
+
|
|
|
|
+ int groups;
|
|
|
|
+ int *group_size;
|
|
|
|
+ int *group_offset;
|
|
|
|
+} tree;
|
|
|
|
+tree *read_tree(char *filename);
|
|
|
|
+
|
|
|
|
+typedef enum{
|
|
|
|
+ LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU
|
|
|
|
+} ACTIVATION;
|
|
|
|
+
|
|
|
|
+typedef enum{
|
|
|
|
+ PNG, BMP, TGA, JPG
|
|
|
|
+} IMTYPE;
|
|
|
|
+
|
|
|
|
+typedef enum{
|
|
|
|
+ MULT, ADD, SUB, DIV
|
|
|
|
+} BINARY_ACTIVATION;
|
|
|
|
+
|
|
|
|
+typedef enum {
|
|
|
|
+ CONVOLUTIONAL,
|
|
|
|
+ DECONVOLUTIONAL,
|
|
|
|
+ CONNECTED,
|
|
|
|
+ MAXPOOL,
|
|
|
|
+ SOFTMAX,
|
|
|
|
+ DETECTION,
|
|
|
|
+ DROPOUT,
|
|
|
|
+ CROP,
|
|
|
|
+ ROUTE,
|
|
|
|
+ COST,
|
|
|
|
+ NORMALIZATION,
|
|
|
|
+ AVGPOOL,
|
|
|
|
+ LOCAL,
|
|
|
|
+ SHORTCUT,
|
|
|
|
+ ACTIVE,
|
|
|
|
+ RNN,
|
|
|
|
+ GRU,
|
|
|
|
+ LSTM,
|
|
|
|
+ CRNN,
|
|
|
|
+ BATCHNORM,
|
|
|
|
+ NETWORK,
|
|
|
|
+ XNOR,
|
|
|
|
+ REGION,
|
|
|
|
+ YOLO,
|
|
|
|
+ ISEG,
|
|
|
|
+ REORG,
|
|
|
|
+ UPSAMPLE,
|
|
|
|
+ LOGXENT,
|
|
|
|
+ L2NORM,
|
|
|
|
+ BLANK
|
|
|
|
+} LAYER_TYPE;
|
|
|
|
+
|
|
|
|
+typedef enum{
|
|
|
|
+ SSE, MASKED, L1, SEG, SMOOTH,WGAN
|
|
|
|
+} COST_TYPE;
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ int batch;
|
|
|
|
+ float learning_rate;
|
|
|
|
+ float momentum;
|
|
|
|
+ float decay;
|
|
|
|
+ int adam;
|
|
|
|
+ float B1;
|
|
|
|
+ float B2;
|
|
|
|
+ float eps;
|
|
|
|
+ int t;
|
|
|
|
+} update_args;
|
|
|
|
+
|
|
|
|
+struct network;
|
|
|
|
+typedef struct network network;
|
|
|
|
+
|
|
|
|
+struct layer;
|
|
|
|
+typedef struct layer layer;
|
|
|
|
+
|
|
|
|
+struct layer{
|
|
|
|
+ LAYER_TYPE type;
|
|
|
|
+ ACTIVATION activation;
|
|
|
|
+ COST_TYPE cost_type;
|
|
|
|
+ void (*forward) (struct layer, struct network);
|
|
|
|
+ void (*backward) (struct layer, struct network);
|
|
|
|
+ void (*update) (struct layer, update_args);
|
|
|
|
+ void (*forward_gpu) (struct layer, struct network);
|
|
|
|
+ void (*backward_gpu) (struct layer, struct network);
|
|
|
|
+ void (*update_gpu) (struct layer, update_args);
|
|
|
|
+ int batch_normalize;
|
|
|
|
+ int shortcut;
|
|
|
|
+ int batch;
|
|
|
|
+ int forced;
|
|
|
|
+ int flipped;
|
|
|
|
+ int inputs;
|
|
|
|
+ int outputs;
|
|
|
|
+ int nweights;
|
|
|
|
+ int nbiases;
|
|
|
|
+ int extra;
|
|
|
|
+ int truths;
|
|
|
|
+ int h,w,c;
|
|
|
|
+ int out_h, out_w, out_c;
|
|
|
|
+ int n;
|
|
|
|
+ int max_boxes;
|
|
|
|
+ int groups;
|
|
|
|
+ int size;
|
|
|
|
+ int side;
|
|
|
|
+ int stride;
|
|
|
|
+ int reverse;
|
|
|
|
+ int flatten;
|
|
|
|
+ int spatial;
|
|
|
|
+ int pad;
|
|
|
|
+ int sqrt;
|
|
|
|
+ int flip;
|
|
|
|
+ int index;
|
|
|
|
+ int binary;
|
|
|
|
+ int xnor;
|
|
|
|
+ int steps;
|
|
|
|
+ int hidden;
|
|
|
|
+ int truth;
|
|
|
|
+ float smooth;
|
|
|
|
+ float dot;
|
|
|
|
+ float angle;
|
|
|
|
+ float jitter;
|
|
|
|
+ float saturation;
|
|
|
|
+ float exposure;
|
|
|
|
+ float shift;
|
|
|
|
+ float ratio;
|
|
|
|
+ float learning_rate_scale;
|
|
|
|
+ float clip;
|
|
|
|
+ int noloss;
|
|
|
|
+ int softmax;
|
|
|
|
+ int classes;
|
|
|
|
+ int coords;
|
|
|
|
+ int background;
|
|
|
|
+ int rescore;
|
|
|
|
+ int objectness;
|
|
|
|
+ int joint;
|
|
|
|
+ int noadjust;
|
|
|
|
+ int reorg;
|
|
|
|
+ int log;
|
|
|
|
+ int tanh;
|
|
|
|
+ int *mask;
|
|
|
|
+ int total;
|
|
|
|
+
|
|
|
|
+ float alpha;
|
|
|
|
+ float beta;
|
|
|
|
+ float kappa;
|
|
|
|
+
|
|
|
|
+ float coord_scale;
|
|
|
|
+ float object_scale;
|
|
|
|
+ float noobject_scale;
|
|
|
|
+ float mask_scale;
|
|
|
|
+ float class_scale;
|
|
|
|
+ int bias_match;
|
|
|
|
+ int random;
|
|
|
|
+ float ignore_thresh;
|
|
|
|
+ float truth_thresh;
|
|
|
|
+ float thresh;
|
|
|
|
+ float focus;
|
|
|
|
+ int classfix;
|
|
|
|
+ int absolute;
|
|
|
|
+
|
|
|
|
+ int onlyforward;
|
|
|
|
+ int stopbackward;
|
|
|
|
+ int dontload;
|
|
|
|
+ int dontsave;
|
|
|
|
+ int dontloadscales;
|
|
|
|
+ int numload;
|
|
|
|
+
|
|
|
|
+ float temperature;
|
|
|
|
+ float probability;
|
|
|
|
+ float scale;
|
|
|
|
+
|
|
|
|
+ char * cweights;
|
|
|
|
+ int * indexes;
|
|
|
|
+ int * input_layers;
|
|
|
|
+ int * input_sizes;
|
|
|
|
+ int * map;
|
|
|
|
+ int * counts;
|
|
|
|
+ float ** sums;
|
|
|
|
+ float * rand;
|
|
|
|
+ float * cost;
|
|
|
|
+ float * state;
|
|
|
|
+ float * prev_state;
|
|
|
|
+ float * forgot_state;
|
|
|
|
+ float * forgot_delta;
|
|
|
|
+ float * state_delta;
|
|
|
|
+ float * combine_cpu;
|
|
|
|
+ float * combine_delta_cpu;
|
|
|
|
+
|
|
|
|
+ float * concat;
|
|
|
|
+ float * concat_delta;
|
|
|
|
+
|
|
|
|
+ float * binary_weights;
|
|
|
|
+
|
|
|
|
+ float * biases;
|
|
|
|
+ float * bias_updates;
|
|
|
|
+
|
|
|
|
+ float * scales;
|
|
|
|
+ float * scale_updates;
|
|
|
|
+
|
|
|
|
+ float * weights;
|
|
|
|
+ float * weight_updates;
|
|
|
|
+
|
|
|
|
+ float * delta;
|
|
|
|
+ float * output;
|
|
|
|
+ float * loss;
|
|
|
|
+ float * squared;
|
|
|
|
+ float * norms;
|
|
|
|
+
|
|
|
|
+ float * spatial_mean;
|
|
|
|
+ float * mean;
|
|
|
|
+ float * variance;
|
|
|
|
+
|
|
|
|
+ float * mean_delta;
|
|
|
|
+ float * variance_delta;
|
|
|
|
+
|
|
|
|
+ float * rolling_mean;
|
|
|
|
+ float * rolling_variance;
|
|
|
|
+
|
|
|
|
+ float * x;
|
|
|
|
+ float * x_norm;
|
|
|
|
+
|
|
|
|
+ float * m;
|
|
|
|
+ float * v;
|
|
|
|
+
|
|
|
|
+ float * bias_m;
|
|
|
|
+ float * bias_v;
|
|
|
|
+ float * scale_m;
|
|
|
|
+ float * scale_v;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ float *z_cpu;
|
|
|
|
+ float *r_cpu;
|
|
|
|
+ float *h_cpu;
|
|
|
|
+ float * prev_state_cpu;
|
|
|
|
+
|
|
|
|
+ float *temp_cpu;
|
|
|
|
+ float *temp2_cpu;
|
|
|
|
+ float *temp3_cpu;
|
|
|
|
+
|
|
|
|
+ float *dh_cpu;
|
|
|
|
+ float *hh_cpu;
|
|
|
|
+ float *prev_cell_cpu;
|
|
|
|
+ float *cell_cpu;
|
|
|
|
+ float *f_cpu;
|
|
|
|
+ float *i_cpu;
|
|
|
|
+ float *g_cpu;
|
|
|
|
+ float *o_cpu;
|
|
|
|
+ float *c_cpu;
|
|
|
|
+ float *dc_cpu;
|
|
|
|
+
|
|
|
|
+ float * binary_input;
|
|
|
|
+
|
|
|
|
+ struct layer *input_layer;
|
|
|
|
+ struct layer *self_layer;
|
|
|
|
+ struct layer *output_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *reset_layer;
|
|
|
|
+ struct layer *update_layer;
|
|
|
|
+ struct layer *state_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *input_gate_layer;
|
|
|
|
+ struct layer *state_gate_layer;
|
|
|
|
+ struct layer *input_save_layer;
|
|
|
|
+ struct layer *state_save_layer;
|
|
|
|
+ struct layer *input_state_layer;
|
|
|
|
+ struct layer *state_state_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *input_z_layer;
|
|
|
|
+ struct layer *state_z_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *input_r_layer;
|
|
|
|
+ struct layer *state_r_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *input_h_layer;
|
|
|
|
+ struct layer *state_h_layer;
|
|
|
|
+
|
|
|
|
+ struct layer *wz;
|
|
|
|
+ struct layer *uz;
|
|
|
|
+ struct layer *wr;
|
|
|
|
+ struct layer *ur;
|
|
|
|
+ struct layer *wh;
|
|
|
|
+ struct layer *uh;
|
|
|
|
+ struct layer *uo;
|
|
|
|
+ struct layer *wo;
|
|
|
|
+ struct layer *uf;
|
|
|
|
+ struct layer *wf;
|
|
|
|
+ struct layer *ui;
|
|
|
|
+ struct layer *wi;
|
|
|
|
+ struct layer *ug;
|
|
|
|
+ struct layer *wg;
|
|
|
|
+
|
|
|
|
+ tree *softmax_tree;
|
|
|
|
+
|
|
|
|
+ size_t workspace_size;
|
|
|
|
+
|
|
|
|
+#ifdef GPU
|
|
|
|
+ int *indexes_gpu;
|
|
|
|
+
|
|
|
|
+ float *z_gpu;
|
|
|
|
+ float *r_gpu;
|
|
|
|
+ float *h_gpu;
|
|
|
|
+
|
|
|
|
+ float *temp_gpu;
|
|
|
|
+ float *temp2_gpu;
|
|
|
|
+ float *temp3_gpu;
|
|
|
|
+
|
|
|
|
+ float *dh_gpu;
|
|
|
|
+ float *hh_gpu;
|
|
|
|
+ float *prev_cell_gpu;
|
|
|
|
+ float *cell_gpu;
|
|
|
|
+ float *f_gpu;
|
|
|
|
+ float *i_gpu;
|
|
|
|
+ float *g_gpu;
|
|
|
|
+ float *o_gpu;
|
|
|
|
+ float *c_gpu;
|
|
|
|
+ float *dc_gpu;
|
|
|
|
+
|
|
|
|
+ float *m_gpu;
|
|
|
|
+ float *v_gpu;
|
|
|
|
+ float *bias_m_gpu;
|
|
|
|
+ float *scale_m_gpu;
|
|
|
|
+ float *bias_v_gpu;
|
|
|
|
+ float *scale_v_gpu;
|
|
|
|
+
|
|
|
|
+ float * combine_gpu;
|
|
|
|
+ float * combine_delta_gpu;
|
|
|
|
+
|
|
|
|
+ float * prev_state_gpu;
|
|
|
|
+ float * forgot_state_gpu;
|
|
|
|
+ float * forgot_delta_gpu;
|
|
|
|
+ float * state_gpu;
|
|
|
|
+ float * state_delta_gpu;
|
|
|
|
+ float * gate_gpu;
|
|
|
|
+ float * gate_delta_gpu;
|
|
|
|
+ float * save_gpu;
|
|
|
|
+ float * save_delta_gpu;
|
|
|
|
+ float * concat_gpu;
|
|
|
|
+ float * concat_delta_gpu;
|
|
|
|
+
|
|
|
|
+ float * binary_input_gpu;
|
|
|
|
+ float * binary_weights_gpu;
|
|
|
|
+
|
|
|
|
+ float * mean_gpu;
|
|
|
|
+ float * variance_gpu;
|
|
|
|
+
|
|
|
|
+ float * rolling_mean_gpu;
|
|
|
|
+ float * rolling_variance_gpu;
|
|
|
|
+
|
|
|
|
+ float * variance_delta_gpu;
|
|
|
|
+ float * mean_delta_gpu;
|
|
|
|
+
|
|
|
|
+ float * x_gpu;
|
|
|
|
+ float * x_norm_gpu;
|
|
|
|
+ float * weights_gpu;
|
|
|
|
+ float * weight_updates_gpu;
|
|
|
|
+ float * weight_change_gpu;
|
|
|
|
+
|
|
|
|
+ float * biases_gpu;
|
|
|
|
+ float * bias_updates_gpu;
|
|
|
|
+ float * bias_change_gpu;
|
|
|
|
+
|
|
|
|
+ float * scales_gpu;
|
|
|
|
+ float * scale_updates_gpu;
|
|
|
|
+ float * scale_change_gpu;
|
|
|
|
+
|
|
|
|
+ float * output_gpu;
|
|
|
|
+ float * loss_gpu;
|
|
|
|
+ float * delta_gpu;
|
|
|
|
+ float * rand_gpu;
|
|
|
|
+ float * squared_gpu;
|
|
|
|
+ float * norms_gpu;
|
|
|
|
+#ifdef CUDNN
|
|
|
|
+ cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
|
|
|
|
+ cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
|
|
|
|
+ cudnnTensorDescriptor_t normTensorDesc;
|
|
|
|
+ cudnnFilterDescriptor_t weightDesc;
|
|
|
|
+ cudnnFilterDescriptor_t dweightDesc;
|
|
|
|
+ cudnnConvolutionDescriptor_t convDesc;
|
|
|
|
+ cudnnConvolutionFwdAlgo_t fw_algo;
|
|
|
|
+ cudnnConvolutionBwdDataAlgo_t bd_algo;
|
|
|
|
+ cudnnConvolutionBwdFilterAlgo_t bf_algo;
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+void free_layer(layer);
|
|
|
|
+
|
|
|
|
+typedef enum {
|
|
|
|
+ CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
|
|
|
|
+} learning_rate_policy;
|
|
|
|
+
|
|
|
|
+typedef struct network{
|
|
|
|
+ int n;
|
|
|
|
+ int batch;
|
|
|
|
+ size_t *seen;
|
|
|
|
+ int *t;
|
|
|
|
+ float epoch;
|
|
|
|
+ int subdivisions;
|
|
|
|
+ layer *layers;
|
|
|
|
+ float *output;
|
|
|
|
+ learning_rate_policy policy;
|
|
|
|
+
|
|
|
|
+ float learning_rate;
|
|
|
|
+ float momentum;
|
|
|
|
+ float decay;
|
|
|
|
+ float gamma;
|
|
|
|
+ float scale;
|
|
|
|
+ float power;
|
|
|
|
+ int time_steps;
|
|
|
|
+ int step;
|
|
|
|
+ int max_batches;
|
|
|
|
+ float *scales;
|
|
|
|
+ int *steps;
|
|
|
|
+ int num_steps;
|
|
|
|
+ int burn_in;
|
|
|
|
+
|
|
|
|
+ int adam;
|
|
|
|
+ float B1;
|
|
|
|
+ float B2;
|
|
|
|
+ float eps;
|
|
|
|
+
|
|
|
|
+ int inputs;
|
|
|
|
+ int outputs;
|
|
|
|
+ int truths;
|
|
|
|
+ int notruth;
|
|
|
|
+ int h, w, c;
|
|
|
|
+ int max_crop;
|
|
|
|
+ int min_crop;
|
|
|
|
+ float max_ratio;
|
|
|
|
+ float min_ratio;
|
|
|
|
+ int center;
|
|
|
|
+ float angle;
|
|
|
|
+ float aspect;
|
|
|
|
+ float exposure;
|
|
|
|
+ float saturation;
|
|
|
|
+ float hue;
|
|
|
|
+ int random;
|
|
|
|
+
|
|
|
|
+ int gpu_index;
|
|
|
|
+ tree *hierarchy;
|
|
|
|
+
|
|
|
|
+ float *input;
|
|
|
|
+ float *truth;
|
|
|
|
+ float *delta;
|
|
|
|
+ float *workspace;
|
|
|
|
+ int train;
|
|
|
|
+ int index;
|
|
|
|
+ float *cost;
|
|
|
|
+ float clip;
|
|
|
|
+
|
|
|
|
+#ifdef GPU
|
|
|
|
+ float *input_gpu;
|
|
|
|
+ float *truth_gpu;
|
|
|
|
+ float *delta_gpu;
|
|
|
|
+ float *output_gpu;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+} network;
|
|
|
|
+
|
|
|
|
+typedef struct {
|
|
|
|
+ int w;
|
|
|
|
+ int h;
|
|
|
|
+ float scale;
|
|
|
|
+ float rad;
|
|
|
|
+ float dx;
|
|
|
|
+ float dy;
|
|
|
|
+ float aspect;
|
|
|
|
+} augment_args;
|
|
|
|
+
|
|
|
|
+typedef struct {
|
|
|
|
+ int w;
|
|
|
|
+ int h;
|
|
|
|
+ int c;
|
|
|
|
+ float *data;
|
|
|
|
+} image;
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ float x, y, w, h;
|
|
|
|
+} box;
|
|
|
|
+
|
|
|
|
+typedef struct detection{
|
|
|
|
+ box bbox;
|
|
|
|
+ int classes;
|
|
|
|
+ float *prob;
|
|
|
|
+ float *mask;
|
|
|
|
+ float objectness;
|
|
|
|
+ int sort_class;
|
|
|
|
+} detection;
|
|
|
|
+
|
|
|
|
+typedef struct matrix{
|
|
|
|
+ int rows, cols;
|
|
|
|
+ float **vals;
|
|
|
|
+} matrix;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ int w, h;
|
|
|
|
+ matrix X;
|
|
|
|
+ matrix y;
|
|
|
|
+ int shallow;
|
|
|
|
+ int *num_boxes;
|
|
|
|
+ box **boxes;
|
|
|
|
+} data;
|
|
|
|
+
|
|
|
|
+typedef enum {
|
|
|
|
+ CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
|
|
|
|
+} data_type;
|
|
|
|
+
|
|
|
|
+typedef struct load_args{
|
|
|
|
+ int threads;
|
|
|
|
+ char **paths;
|
|
|
|
+ char *path;
|
|
|
|
+ int n;
|
|
|
|
+ int m;
|
|
|
|
+ char **labels;
|
|
|
|
+ int h;
|
|
|
|
+ int w;
|
|
|
|
+ int out_w;
|
|
|
|
+ int out_h;
|
|
|
|
+ int nh;
|
|
|
|
+ int nw;
|
|
|
|
+ int num_boxes;
|
|
|
|
+ int min, max, size;
|
|
|
|
+ int classes;
|
|
|
|
+ int background;
|
|
|
|
+ int scale;
|
|
|
|
+ int center;
|
|
|
|
+ int coords;
|
|
|
|
+ float jitter;
|
|
|
|
+ float angle;
|
|
|
|
+ float aspect;
|
|
|
|
+ float saturation;
|
|
|
|
+ float exposure;
|
|
|
|
+ float hue;
|
|
|
|
+ data *d;
|
|
|
|
+ image *im;
|
|
|
|
+ image *resized;
|
|
|
|
+ data_type type;
|
|
|
|
+ tree *hierarchy;
|
|
|
|
+} load_args;
|
|
|
|
+
|
|
|
|
+typedef struct{
|
|
|
|
+ int id;
|
|
|
|
+ float x,y,w,h;
|
|
|
|
+ float left, right, top, bottom;
|
|
|
|
+} box_label;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+network *load_network(char *cfg, char *weights, int clear);
|
|
|
|
+load_args get_base_args(network *net);
|
|
|
|
+
|
|
|
|
+void free_data(data d);
|
|
|
|
+
|
|
|
|
+typedef struct node{
|
|
|
|
+ void *val;
|
|
|
|
+ struct node *next;
|
|
|
|
+ struct node *prev;
|
|
|
|
+} node;
|
|
|
|
+
|
|
|
|
+typedef struct list{
|
|
|
|
+ int size;
|
|
|
|
+ node *front;
|
|
|
|
+ node *back;
|
|
|
|
+} list;
|
|
|
|
+
|
|
|
|
+pthread_t load_data(load_args args);
|
|
|
|
+list *read_data_cfg(char *filename);
|
|
|
|
+list *read_cfg(char *filename);
|
|
|
|
+unsigned char *read_file(char *filename);
|
|
|
|
+data resize_data(data orig, int w, int h);
|
|
|
|
+data *tile_data(data orig, int divs, int size);
|
|
|
|
+data select_data(data *orig, int *inds);
|
|
|
|
+
|
|
|
|
+void forward_network(network *net);
|
|
|
|
+void backward_network(network *net);
|
|
|
|
+void update_network(network *net);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
|
|
|
+void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
|
|
|
+void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
|
|
|
+void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
|
|
|
+void fill_cpu(int N, float ALPHA, float * X, int INCX);
|
|
|
|
+void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
|
|
|
+void softmax(float *input, int n, float temp, int stride, float *output);
|
|
|
|
+
|
|
|
|
+int best_3d_shift_r(image a, image b, int min, int max);
|
|
|
|
+#ifdef GPU
|
|
|
|
+void axpy_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
|
|
|
+void fill_gpu(int N, float ALPHA, float * X, int INCX);
|
|
|
|
+void scal_gpu(int N, float ALPHA, float * X, int INCX);
|
|
|
|
+void copy_gpu(int N, float * X, int INCX, float * Y, int INCY);
|
|
|
|
+
|
|
|
|
+void cuda_set_device(int n);
|
|
|
|
+void cuda_free(float *x_gpu);
|
|
|
|
+float *cuda_make_array(float *x, size_t n);
|
|
|
|
+void cuda_pull_array(float *x_gpu, float *x, size_t n);
|
|
|
|
+float cuda_mag_array(float *x_gpu, size_t n);
|
|
|
|
+void cuda_push_array(float *x_gpu, float *x, size_t n);
|
|
|
|
+
|
|
|
|
+void forward_network_gpu(network *net);
|
|
|
|
+void backward_network_gpu(network *net);
|
|
|
|
+void update_network_gpu(network *net);
|
|
|
|
+
|
|
|
|
+float train_networks(network **nets, int n, data d, int interval);
|
|
|
|
+void sync_nets(network **nets, int n, int interval);
|
|
|
|
+void harmless_update_network_gpu(network *net);
|
|
|
|
+#endif
|
|
|
|
+image get_label(image **characters, char *string, int size);
|
|
|
|
+void draw_label(image a, int r, int c, image label, const float *rgb);
|
|
|
|
+void save_image(image im, const char *name);
|
|
|
|
+void save_image_options(image im, const char *name, IMTYPE f, int quality);
|
|
|
|
+void get_next_batch(data d, int n, int offset, float *X, float *y);
|
|
|
|
+void grayscale_image_3c(image im);
|
|
|
|
+void normalize_image(image p);
|
|
|
|
+void matrix_to_csv(matrix m);
|
|
|
|
+float train_network_sgd(network *net, data d, int n);
|
|
|
|
+void rgbgr_image(image im);
|
|
|
|
+data copy_data(data d);
|
|
|
|
+data concat_data(data d1, data d2);
|
|
|
|
+data load_cifar10_data(char *filename);
|
|
|
|
+float matrix_topk_accuracy(matrix truth, matrix guess, int k);
|
|
|
|
+void matrix_add_matrix(matrix from, matrix to);
|
|
|
|
+void scale_matrix(matrix m, float scale);
|
|
|
|
+matrix csv_to_matrix(char *filename);
|
|
|
|
+float *network_accuracies(network *net, data d, int n);
|
|
|
|
+float train_network_datum(network *net);
|
|
|
|
+image make_random_image(int w, int h, int c);
|
|
|
|
+
|
|
|
|
+void denormalize_connected_layer(layer l);
|
|
|
|
+void denormalize_convolutional_layer(layer l);
|
|
|
|
+void statistics_connected_layer(layer l);
|
|
|
|
+void rescale_weights(layer l, float scale, float trans);
|
|
|
|
+void rgbgr_weights(layer l);
|
|
|
|
+image *get_weights(layer l);
|
|
|
|
+
|
|
|
|
+void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, int avg, float hier_thresh, int w, int h, int fps, int fullscreen);
|
|
|
|
+void get_detection_detections(layer l, int w, int h, float thresh, detection *dets);
|
|
|
|
+
|
|
|
|
+char *option_find_str(list *l, char *key, char *def);
|
|
|
|
+int option_find_int(list *l, char *key, int def);
|
|
|
|
+int option_find_int_quiet(list *l, char *key, int def);
|
|
|
|
+
|
|
|
|
+network *parse_network_cfg(char *filename);
|
|
|
|
+void save_weights(network *net, char *filename);
|
|
|
|
+void load_weights(network *net, char *filename);
|
|
|
|
+void save_weights_upto(network *net, char *filename, int cutoff);
|
|
|
|
+void load_weights_upto(network *net, char *filename, int start, int cutoff);
|
|
|
|
+
|
|
|
|
+void zero_objectness(layer l);
|
|
|
|
+void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets);
|
|
|
|
+int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets);
|
|
|
|
+void free_network(network *net);
|
|
|
|
+void set_batch_network(network *net, int b);
|
|
|
|
+void set_temp_network(network *net, float t);
|
|
|
|
+image load_image(char *filename, int w, int h, int c);
|
|
|
|
+image load_image_color(char *filename, int w, int h);
|
|
|
|
+image make_image(int w, int h, int c);
|
|
|
|
+image resize_image(image im, int w, int h);
|
|
|
|
+void censor_image(image im, int dx, int dy, int w, int h);
|
|
|
|
+image letterbox_image(image im, int w, int h);
|
|
|
|
+image crop_image(image im, int dx, int dy, int w, int h);
|
|
|
|
+image center_crop_image(image im, int w, int h);
|
|
|
|
+image resize_min(image im, int min);
|
|
|
|
+image resize_max(image im, int max);
|
|
|
|
+image threshold_image(image im, float thresh);
|
|
|
|
+image mask_to_rgb(image mask);
|
|
|
|
+int resize_network(network *net, int w, int h);
|
|
|
|
+void free_matrix(matrix m);
|
|
|
|
+void test_resize(char *filename);
|
|
|
|
+int show_image(image p, const char *name, int ms);
|
|
|
|
+image copy_image(image p);
|
|
|
|
+void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b);
|
|
|
|
+float get_current_rate(network *net);
|
|
|
|
+void composite_3d(char *f1, char *f2, char *out, int delta);
|
|
|
|
+data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h);
|
|
|
|
+size_t get_current_batch(network *net);
|
|
|
|
+void constrain_image(image im);
|
|
|
|
+image get_network_image_layer(network *net, int i);
|
|
|
|
+layer get_network_output_layer(network *net);
|
|
|
|
+void top_predictions(network *net, int n, int *index);
|
|
|
|
+void flip_image(image a);
|
|
|
|
+image float_to_image(int w, int h, int c, float *data);
|
|
|
|
+void ghost_image(image source, image dest, int dx, int dy);
|
|
|
|
+float network_accuracy(network *net, data d);
|
|
|
|
+void random_distort_image(image im, float hue, float saturation, float exposure);
|
|
|
|
+void fill_image(image m, float s);
|
|
|
|
+image grayscale_image(image im);
|
|
|
|
+void rotate_image_cw(image im, int times);
|
|
|
|
+double what_time_is_it_now();
|
|
|
|
+image rotate_image(image m, float rad);
|
|
|
|
+void visualize_network(network *net);
|
|
|
|
+float box_iou(box a, box b);
|
|
|
|
+data load_all_cifar10();
|
|
|
|
+box_label *read_boxes(char *filename, int *n);
|
|
|
|
+box float_to_box(float *f, int stride);
|
|
|
|
+void draw_detections(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes);
|
|
|
|
+
|
|
|
|
+matrix network_predict_data(network *net, data test);
|
|
|
|
+image **load_alphabet();
|
|
|
|
+image get_network_image(network *net);
|
|
|
|
+float *network_predict(network *net, float *input);
|
|
|
|
+
|
|
|
|
+int network_width(network *net);
|
|
|
|
+int network_height(network *net);
|
|
|
|
+float *network_predict_image(network *net, image im);
|
|
|
|
+void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets);
|
|
|
|
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num);
|
|
|
|
+void free_detections(detection *dets, int n);
|
|
|
|
+
|
|
|
|
+void reset_network_state(network *net, int b);
|
|
|
|
+
|
|
|
|
+char **get_labels(char *filename);
|
|
|
|
+void do_nms_obj(detection *dets, int total, int classes, float thresh);
|
|
|
|
+void do_nms_sort(detection *dets, int total, int classes, float thresh);
|
|
|
|
+
|
|
|
|
+matrix make_matrix(int rows, int cols);
|
|
|
|
+
|
|
|
|
+#ifdef OPENCV
|
|
|
|
+void *open_video_stream(const char *f, int c, int w, int h, int fps);
|
|
|
|
+image get_image_from_stream(void *p);
|
|
|
|
+void make_window(char *name, int w, int h, int fullscreen);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void free_image(image m);
|
|
|
|
+float train_network(network *net, data d);
|
|
|
|
+pthread_t load_data_in_thread(load_args args);
|
|
|
|
+void load_data_blocking(load_args args);
|
|
|
|
+list *get_paths(char *filename);
|
|
|
|
+void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves, int stride);
|
|
|
|
+void change_leaves(tree *t, char *leaf_list);
|
|
|
|
+
|
|
|
|
+int find_int_arg(int argc, char **argv, char *arg, int def);
|
|
|
|
+float find_float_arg(int argc, char **argv, char *arg, float def);
|
|
|
|
+int find_arg(int argc, char* argv[], char *arg);
|
|
|
|
+char *find_char_arg(int argc, char **argv, char *arg, char *def);
|
|
|
|
+char *basecfg(char *cfgfile);
|
|
|
|
+void find_replace(char *str, char *orig, char *rep, char *output);
|
|
|
|
+void free_ptrs(void **ptrs, int n);
|
|
|
|
+char *fgetl(FILE *fp);
|
|
|
|
+void strip(char *s);
|
|
|
|
+float sec(clock_t clocks);
|
|
|
|
+void **list_to_array(list *l);
|
|
|
|
+void top_k(float *a, int n, int k, int *index);
|
|
|
|
+int *read_map(char *filename);
|
|
|
|
+void error(const char *s);
|
|
|
|
+int max_index(float *a, int n);
|
|
|
|
+int max_int_index(int *a, int n);
|
|
|
|
+int sample_array(float *a, int n);
|
|
|
|
+int *random_index_order(int min, int max);
|
|
|
|
+void free_list(list *l);
|
|
|
|
+float mse_array(float *a, int n);
|
|
|
|
+float variance_array(float *a, int n);
|
|
|
|
+float mag_array(float *a, int n);
|
|
|
|
+void scale_array(float *a, int n, float s);
|
|
|
|
+float mean_array(float *a, int n);
|
|
|
|
+float sum_array(float *a, int n);
|
|
|
|
+void normalize_array(float *a, int n);
|
|
|
|
+int *read_intlist(char *s, int *n, int d);
|
|
|
|
+size_t rand_size_t();
|
|
|
|
+float rand_normal();
|
|
|
|
+float rand_uniform(float min, float max);
|
|
|
|
+
|
|
|
|
+#ifdef __cplusplus
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#endif
|