#ifndef CAFFE_CONV_LAYER_HPP_ #define CAFFE_CONV_LAYER_HPP_ #include #include "caffe/blob.hpp" #include "caffe/layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/layers/base_conv_layer.hpp" namespace caffe { /** * @brief Convolves the input image with a bank of learned filters, * and (optionally) adds biases. * * Caffe convolves by reduction to matrix multiplication. This achieves * high-throughput and generality of input and filter dimensions but comes at * the cost of memory for matrices. This makes use of efficiency in BLAS. * * The input is "im2col" transformed to a channel K' x H x W data matrix * for multiplication with the N x K' x H x W filter matrix to yield a * N' x H x W output matrix that is then "col2im" restored. K' is the * input channel * kernel height * kernel width dimension of the unrolled * inputs so that the im2col matrix has a column for each input region to * be filtered. col2im restores the output spatial structure by rolling up * the output channel N' columns of the output matrix. */ template class ConvolutionLayer : public BaseConvolutionLayer { public: /** * @param param provides ConvolutionParameter convolution_param, * with ConvolutionLayer options: * - num_output. The number of filters. * - kernel_size / kernel_h / kernel_w. The filter dimensions, given by * kernel_size for square filters or kernel_h and kernel_w for rectangular * filters. * - stride / stride_h / stride_w (\b optional, default 1). The filter * stride, given by stride_size for equal dimensions or stride_h and stride_w * for different strides. By default the convolution is dense with stride 1. * - pad / pad_h / pad_w (\b optional, default 0). The zero-padding for * convolution, given by pad for equal dimensions or pad_h and pad_w for * different padding. Input padding is computed implicitly instead of * actually padding. * - dilation (\b optional, default 1). The filter * dilation, given by dilation_size for equal dimensions for different * dilation. By default the convolution has dilation 1. * - group (\b optional, default 1). The number of filter groups. Group * convolution is a method for reducing parameterization by selectively * connecting input and output channels. The input and output channel dimensions must be divisible * by the number of groups. For group @f$ \geq 1 @f$, the * convolutional filters' input and output channels are separated s.t. each * group takes 1 / group of the input channels and makes 1 / group of the * output channels. Concretely 4 input channels, 8 output channels, and * 2 groups separate input channels 1-2 and output channels 1-4 into the * first group and input channels 3-4 and output channels 5-8 into the second * group. * - bias_term (\b optional, default true). Whether to have a bias. * - engine: convolution has CAFFE (matrix multiplication) and CUDNN (library * kernels + stream parallelism) engines. */ explicit ConvolutionLayer(const LayerParameter& param) : BaseConvolutionLayer(param) {} virtual inline const char* type() const { return "Convolution"; } protected: virtual void Forward_cpu(const vector*>& bottom, const vector*>& top); virtual void Forward_gpu(const vector*>& bottom, const vector*>& top); virtual void Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); virtual void Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); virtual inline bool reverse_dimensions() { return false; } virtual void compute_output_shape(); }; } // namespace caffe #endif // CAFFE_CONV_LAYER_HPP_