123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- #ifndef FUSION_HPP
- #define FUSION_HPP
- #include "fusion_probabilities.h"
- #include "fusionobjectarray.pb.h"
- #include <iostream>
- #include "opencv2/opencv.hpp"
- #include "perceptionoutput.h"
- #include "Eigen/Eigen"
- namespace iv {
- namespace fusion {
- //std::vector<Match_index> match_idxs;
- static float time_step = 0.3;
- static std::vector<std::string> labels = {"unknown","ped","bike","car","bus_or_truck"};
- typedef std::vector<iv::Perception::PerceptionOutput> LidarObject;
- float ComputeDis(cv::Point2f po1, cv::Point2f po2)
- {
- return (sqrt(pow((po1.x-po2.x),2) + pow((po1.y-po2.y),2)));
- }
- void Get_AssociationMat(LidarObject& lidar_object_vector,iv::radar::radarobjectarray& radar_object_array,
- std::vector<match_index>& match_idx,std::vector<int>&radar_idx)
- {
- // std::cout<<" is ok "<<std::endl;
- int nlidar = lidar_object_vector.size();
- int nradar = radar_object_array.obj_size();
- match_idx.clear();
- radar_idx.clear();
- for(int i = 0; i<lidar_object_vector.size(); i++)
- {
- match_index match;
- match.nlidar = i;
- std::vector<int> fuindex;
- // std::cout<<" size "<<radar_object_array.obj_size()<<std::endl;
- for(int j =0; j<radar_object_array.obj_size(); j++)
- {
- // std::cout<<" is ok "<<std::endl;
- if(radar_object_array.obj(j).bvalid() == false) continue;
- if(!(iv::fusion::FusionProbabilities::ComputRadarLidarmatch(radar_object_array.obj(j),lidar_object_vector.at(i))))
- {
- fuindex.push_back(j);
- }
- }
- if(fuindex.size() >0)
- {
- std::vector<float> dis;
- cv::Point2f po1;
- po1.x = lidar_object_vector.at(i).location.x;
- po1.y = lidar_object_vector.at(i).location.y;
- for(std::vector<int>::iterator d = fuindex.begin(); d !=fuindex.end(); d++)
- {
- cv::Point2f po2;
- po2.x = radar_object_array.obj(*d).x();
- po2.y = radar_object_array.obj(*d).y();
- dis.push_back(ComputeDis(po1,po2));
- }
- auto smallest = std::min_element(std::begin(dis), std::end(dis));
- int index = std::distance(std::begin(dis), smallest);
- dis.clear();
- match.nradar = index;
- }else {
- match.nradar = -1000;
- }
- // std::cout<<" fuindex nradar "<<fuindex.size()<<" "<<match.nradar<<std::endl;
- match_idx.push_back(match);
- }
- for(int k = 0; k<radar_object_array.obj_size(); k++)
- {
- std::vector<int> index;
- for(std::vector<match_index>::iterator l = match_idx.begin(); l != match_idx.end(); l++)
- {
- index.push_back(l->nradar);
- }
- if(std::find(index.begin(),index.end(),k) !=index.end())
- {
- radar_idx.push_back(k);
- }
- }
- }
- void RLfusion(LidarObject& lidar_object_vector,iv::radar::radarobjectarray& radar_object_array, iv::fusion::fusionobjectarray& lidar_radar_fusion_object_array)
- {
- lidar_radar_fusion_object_array.Clear();
- std::vector<match_index> match_idx;
- std::vector<int> radar_idx;
- Get_AssociationMat(lidar_object_vector,radar_object_array,match_idx,radar_idx);
- for(int i =0; i< match_idx.size(); i++)
- {
- iv::fusion::fusionobject fusion_object;
- fusion_object.set_id(lidar_object_vector.at(match_idx.at(i).nlidar).tracker_id);
- fusion_object.set_type_name(labels[lidar_object_vector.at(match_idx.at(i).nlidar).label]);
- fusion_object.set_prob(lidar_object_vector.at(match_idx.at(i).nlidar).robustness);
- if(match_idx.at(i).nradar == -1000)
- {
- // std::cout<<" lidar ok "<<std::endl;
- fusion_object.set_yaw(lidar_object_vector.at(match_idx.at(i).nlidar).yaw);
- fusion_object.set_lifetime(lidar_object_vector.at(match_idx.at(i).nlidar).visible_life);
- iv::fusion::VelXY vel_relative;
- iv::fusion::VelXY *vel_relative_;
- vel_relative.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).velocity.x);
- vel_relative.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).velocity.y);
- vel_relative_ = fusion_object.mutable_vel_relative();
- vel_relative_->CopyFrom(vel_relative);
- iv::fusion::VelXY vel_abs;
- iv::fusion::VelXY *vel_abs_;
- vel_abs.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).velocity_abs.x);
- vel_abs.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).velocity_abs.y);
- vel_abs_ = fusion_object.mutable_vel_abs();
- vel_abs_->CopyFrom(vel_abs);
- iv::fusion::PointXYZ centroid;
- iv::fusion::PointXYZ *centroid_;
- centroid.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).location.x);
- centroid.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).location.y);
- centroid.set_z(lidar_object_vector.at(match_idx.at(i).nlidar).location.z);
- centroid_ = fusion_object.mutable_centroid();
- centroid_->CopyFrom(centroid);
- }else {
- // std::cout<<" radar ok "<<std::endl;
- fusion_object.set_yaw(radar_object_array.obj(match_idx.at(i).nradar).angle());
- fusion_object.set_lifetime(radar_object_array.obj(match_idx.at(i).nradar).has_bridge_object());
- iv::fusion::VelXY vel_relative;
- iv::fusion::VelXY *vel_relative_;
- vel_relative.set_x(radar_object_array.obj(match_idx.at(i).nradar).vx());
- vel_relative.set_y(radar_object_array.obj(match_idx.at(i).nradar).vy());
- vel_relative_ = fusion_object.mutable_vel_relative();
- vel_relative_->CopyFrom(vel_relative);
- iv::fusion::VelXY vel_abs;
- iv::fusion::VelXY *vel_abs_;
- vel_abs.set_x(radar_object_array.obj(match_idx.at(i).nradar).vx());
- vel_abs.set_y(radar_object_array.obj(match_idx.at(i).nradar).vy());
- vel_abs_ = fusion_object.mutable_vel_abs();
- vel_abs_->CopyFrom(vel_abs);
- iv::fusion::PointXYZ centroid;
- iv::fusion::PointXYZ *centroid_;
- centroid.set_x(lidar_object_vector.at(match_idx.at(i).nradar).location.x);
- centroid.set_y(lidar_object_vector.at(match_idx.at(i).nradar).location.y);
- centroid.set_z(lidar_object_vector.at(match_idx.at(i).nradar).location.z);
- centroid_ = fusion_object.mutable_centroid();
- centroid_->CopyFrom(centroid);
- }
- iv::fusion::AccXY acc_relative;
- iv::fusion::AccXY *acc_relative_;
- acc_relative.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).acceleration_abs.x);
- acc_relative.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).acceleration_abs.y);
- acc_relative_ = fusion_object.mutable_acc_relative();
- acc_relative_->CopyFrom(acc_relative);
- iv::fusion::PointXYZ min_point;
- iv::fusion::PointXYZ *min_point_;
- min_point.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).nearest_point.x);
- min_point.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).nearest_point.y);
- min_point_ = fusion_object.mutable_min_point();
- min_point_->CopyFrom(min_point);
- iv::fusion::Dimension dimension;
- iv::fusion::Dimension *dimension_;
- dimension.set_x(lidar_object_vector.at(match_idx.at(i).nlidar).size.x);
- dimension.set_y(lidar_object_vector.at(match_idx.at(i).nlidar).size.y);
- dimension.set_z(lidar_object_vector.at(match_idx.at(i).nlidar).size.z);
- dimension_ = fusion_object.mutable_dimensions();
- dimension_->CopyFrom(dimension);
- if((lidar_object_vector.at(match_idx.at(i).nlidar).size.x>0)&&(lidar_object_vector.at(match_idx.at(i).nlidar).size.y>0))
- {
- int xp = (int)((lidar_object_vector.at(match_idx.at(i).nlidar).size.x/0.2)/2.0);
- if(xp == 0)xp=1;
- int yp = (int)((lidar_object_vector.at(match_idx.at(i).nlidar).size.y/0.2)/2.0);
- if(yp == 0)yp=1;
- int ix,iy;
- for(ix = 0; ix<(xp*2); ix++)
- {
- for(iy = 0; iy<(yp*2); iy++)
- {
- iv::fusion::NomalXYZ nomal_centroid;
- iv::fusion::NomalXYZ *nomal_centroid_;
- float nomal_x = ix*0.2 - xp*0.2;
- float nomal_y = iy*0.2 - yp*0.2;
- float nomal_z = lidar_object_vector.at(match_idx.at(i).nlidar).location.z;
- float s = nomal_x*cos(lidar_object_vector.at(match_idx.at(i).nlidar).yaw) - nomal_y*sin(lidar_object_vector.at(match_idx.at(i).nlidar).yaw);
- float t = nomal_x*sin(lidar_object_vector.at(match_idx.at(i).nlidar).yaw) + nomal_y*cos(lidar_object_vector.at(i).yaw);
- nomal_centroid.set_nomal_x(lidar_object_vector.at(match_idx.at(i).nlidar).location.x + s);
- nomal_centroid.set_nomal_y(lidar_object_vector.at(match_idx.at(i).nlidar).location.y+ t);
- nomal_centroid_ = fusion_object.add_nomal_centroid();
- nomal_centroid_->CopyFrom(nomal_centroid);
- }
- }
- }
- for(int k = 0; k<10; k++)
- {
- // std::cout<<"fusion begin"<<std::endl;
- iv::fusion::PointXYZ point_forcaste;
- iv::fusion::PointXYZ *point_forcaste_;
- float forcast_x = lidar_object_vector.at(match_idx.at(i).nlidar).location.x + lidar_object_vector.at(match_idx.at(i).nlidar).velocity.x*time_step*(k+1);
- float forcast_y = lidar_object_vector.at(match_idx.at(i).nlidar).location.y + lidar_object_vector.at(match_idx.at(i).nlidar).velocity.y*time_step*(k+1);
- point_forcaste.set_x(forcast_x);
- point_forcaste.set_y(forcast_y);
- point_forcaste.set_z(lidar_object_vector.at(match_idx.at(i).nlidar).location.z);
- point_forcaste_ = fusion_object.add_point_forecast();
- point_forcaste_->CopyFrom(point_forcaste);
- iv::fusion::NomalForecast forcast_normal;
- iv::fusion::NomalForecast *forcast_normal_;
- forcast_normal.set_forecast_index(i);
- // std::cout<<"fusion end"<<std::endl;
- if((lidar_object_vector.at(i).size.x>0)&&(lidar_object_vector.at(match_idx.at(i).nlidar).size.y>0))
- {
- int xp = (int)((lidar_object_vector.at(match_idx.at(i).nlidar).size.x/0.2)/2.0);
- if(xp == 0)xp=1;
- int yp = (int)((lidar_object_vector.at(match_idx.at(i).nlidar).size.y/0.2)/2.0);
- if(yp == 0)yp=1;
- int ix,iy;
- for(ix = 0; ix<(xp*2); ix++)
- {
- for(iy = 0; iy<(yp*2); iy++)
- {
- iv::fusion::NomalXYZ nomal_forcast;
- iv::fusion::NomalXYZ *nomal_forcast_;
- float nomal_x = ix*0.2 - xp*0.2;
- float nomal_y = iy*0.2 - yp*0.2;
- float nomal_z = lidar_object_vector.at(match_idx.at(i).nlidar).location.z;
- float s = nomal_x*cos(lidar_object_vector.at(match_idx.at(i).nlidar).yaw) - nomal_y*sin(lidar_object_vector.at(match_idx.at(i).nlidar).yaw);
- float t = nomal_x*sin(lidar_object_vector.at(match_idx.at(i).nlidar).yaw) + nomal_y*cos(lidar_object_vector.at(match_idx.at(i).nlidar).yaw);
- nomal_forcast.set_nomal_x(forcast_x + s);
- nomal_forcast.set_nomal_y(forcast_y + t);
- nomal_forcast_ = forcast_normal.add_forecast_nomal();
- nomal_forcast_->CopyFrom(nomal_forcast);
- }
- }
- }
- forcast_normal_=fusion_object.add_forecast_nomals();
- forcast_normal_->CopyFrom(forcast_normal);
- }
- iv::fusion::fusionobject *pobj = lidar_radar_fusion_object_array.add_obj();
- pobj->CopyFrom(fusion_object);
- }
- for(int j = 0; j< radar_idx.size() ; j++){
- if(radar_object_array.obj(j).bvalid() == false) continue;
- if(abs(radar_object_array.obj(j).x())<4 && radar_object_array.obj(j).y()< 100) continue;
- iv::fusion::fusionobject fusion_obj;
- fusion_obj.set_yaw(radar_object_array.obj(j).angle());
- iv::fusion::VelXY vel_relative;
- iv::fusion::VelXY *vel_relative_;
- vel_relative.set_x(radar_object_array.obj(j).vx());
- vel_relative.set_y(radar_object_array.obj(j).vy());
- vel_relative_ = fusion_obj.mutable_vel_relative();
- vel_relative_->CopyFrom(vel_relative);
- iv::fusion::PointXYZ centroid;
- iv::fusion::PointXYZ *centroid_;
- centroid.set_x(radar_object_array.obj(j).x());
- centroid.set_y(radar_object_array.obj(j).y());
- centroid.set_z(1.0);
- centroid_ = fusion_obj.mutable_centroid();
- centroid_->CopyFrom(centroid);
- iv::fusion::Dimension dimension;
- iv::fusion::Dimension *dimension_;
- dimension.set_x(0.5);
- dimension.set_y(0.5);
- dimension.set_z(1.0);
- dimension_ = fusion_obj.mutable_dimensions();
- dimension_->CopyFrom(dimension);
- int xp = (int)((0.5/0.2)/2.0);
- if(xp == 0)xp=1;
- int yp = (int)((0.5/0.2)/2.0);
- if(yp == 0)yp=1;
- int ix,iy;
- for(ix = 0; ix<(xp*2); ix++)
- {
- for(iy = 0; iy<(yp*2); iy++)
- {
- iv::fusion::NomalXYZ nomal_centroid;
- iv::fusion::NomalXYZ *nomal_centroid_;
- float nomal_x = ix*0.2 - xp*0.2;
- float nomal_y = iy*0.2 - yp*0.2;
- float nomal_z = 1.0;
- float s = nomal_x*cos(radar_object_array.obj(j).angle()) - nomal_y*sin(radar_object_array.obj(j).angle());
- float t = nomal_x*sin(radar_object_array.obj(j).angle()) + nomal_y*cos(radar_object_array.obj(j).angle());
- nomal_centroid.set_nomal_x(radar_object_array.obj(j).x() + s);
- nomal_centroid.set_nomal_y(radar_object_array.obj(j).y() + t);
- nomal_centroid_ = fusion_obj.add_nomal_centroid();
- nomal_centroid_->CopyFrom(nomal_centroid);
- }
- }
- for(int k = 0; k<10; k++)
- {
- // std::cout<<"fusion begin"<<std::endl;
- iv::fusion::PointXYZ point_forcaste;
- iv::fusion::PointXYZ *point_forcaste_;
- float forcast_x = radar_object_array.obj(j).x() + radar_object_array.obj(j).vx()*time_step*(k+1);
- float forcast_y = radar_object_array.obj(j).y() + radar_object_array.obj(j).vy()*time_step*(k+1);
- point_forcaste.set_x(forcast_x);
- point_forcaste.set_y(forcast_y);
- point_forcaste.set_z(1.0);
- point_forcaste_ = fusion_obj.add_point_forecast();
- point_forcaste_->CopyFrom(point_forcaste);
- iv::fusion::NomalForecast forcast_normal;
- iv::fusion::NomalForecast *forcast_normal_;
- forcast_normal.set_forecast_index(j);
- int xp = (int)((0.5/0.2)/2.0);
- if(xp == 0)xp=1;
- int yp = (int)((0.5/0.2)/2.0);
- if(yp == 0)yp=1;
- int ix,iy;
- for(ix = 0; ix<(xp*2); ix++)
- {
- for(iy = 0; iy<(yp*2); iy++)
- {
- iv::fusion::NomalXYZ nomal_forcast;
- iv::fusion::NomalXYZ *nomal_forcast_;
- float nomal_x = ix*0.2 - xp*0.2;
- float nomal_y = iy*0.2 - yp*0.2;
- float nomal_z = 1.0;
- float s = nomal_x*cos(radar_object_array.obj(j).angle()) - nomal_y*sin(radar_object_array.obj(j).angle());
- float t = nomal_x*sin(radar_object_array.obj(j).angle()) + nomal_y*cos(radar_object_array.obj(j).angle());
- nomal_forcast.set_nomal_x(forcast_x + s);
- nomal_forcast.set_nomal_y(forcast_y + t);
- nomal_forcast_ = forcast_normal.add_forecast_nomal();
- nomal_forcast_->CopyFrom(nomal_forcast);
- }
- }
- forcast_normal_=fusion_obj.add_forecast_nomals();
- forcast_normal_->CopyFrom(forcast_normal);
- }
- iv::fusion::fusionobject *obj = lidar_radar_fusion_object_array.add_obj();
- obj->CopyFrom(fusion_obj);
- }
- }
- }
- }
- #endif // FUSION_HPP
|