123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- #include <iostream>
- #include <fstream>
- #include <opencv2/opencv.hpp>
- #include "model.h"
- #include "utils.h"
- #include "preprocess.h"
- #include "postprocess.h"
- #include "cuda_utils.h"
- #include "logging.h"
- Logger gLogger;
- using namespace nvinfer1;
- const int kOutputSize = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1;
- const static int kOutputSegSize = 32 * (kInputH / 4) * (kInputW / 4);
- static cv::Rect get_downscale_rect(float bbox[4], float scale) {
- float left = bbox[0];
- float top = bbox[1];
- float right = bbox[0] + bbox[2];
- float bottom = bbox[1] + bbox[3];
- left = left < 0 ? 0 : left;
- top = top < 0 ? 0: top;
- right = right > 640 ? 640 : right;
- bottom = bottom > 640 ? 640: bottom;
- left /= scale;
- top /= scale;
- right /= scale;
- bottom /= scale;
- return cv::Rect(int(left), int(top), int(right - left), int(bottom - top));
- }
- std::vector<cv::Mat> process_mask(const float* proto, int proto_size, std::vector<Detection>& dets) {
- std::vector<cv::Mat> masks;
- for (size_t i = 0; i < dets.size(); i++) {
- cv::Mat mask_mat = cv::Mat::zeros(kInputH / 4, kInputW / 4, CV_32FC1);
- auto r = get_downscale_rect(dets[i].bbox, 4);
- for (int x = r.x; x < r.x + r.width; x++) {
- for (int y = r.y; y < r.y + r.height; y++) {
- float e = 0.0f;
- for (int j = 0; j < 32; j++) {
- e += dets[i].mask[j] * proto[j * proto_size / 32 + y * mask_mat.cols + x];
- }
- e = 1.0f / (1.0f + expf(-e));
- mask_mat.at<float>(y, x) = e;
- }
- }
- cv::resize(mask_mat, mask_mat, cv::Size(kInputW, kInputH));
- masks.push_back(mask_mat);
- }
- return masks;
- }
- void serialize_engine(std::string &wts_name, std::string &engine_name, std::string &sub_type, float &gd, float &gw, int &max_channels)
- {
- IBuilder *builder = createInferBuilder(gLogger);
- IBuilderConfig *config = builder->createBuilderConfig();
- IHostMemory *serialized_engine = nullptr;
- serialized_engine = buildEngineYolov8Seg(builder, config, DataType::kFLOAT, wts_name, gd, gw, max_channels);
- assert(serialized_engine);
- std::ofstream p(engine_name, std::ios::binary);
- if (!p)
- {
- std::cout << "could not open plan output file" << std::endl;
- assert(false);
- }
- p.write(reinterpret_cast<const char *>(serialized_engine->data()), serialized_engine->size());
- delete builder;
- delete config;
- delete serialized_engine;
- }
- void deserialize_engine(std::string &engine_name, IRuntime **runtime, ICudaEngine **engine, IExecutionContext **context)
- {
- std::ifstream file(engine_name, std::ios::binary);
- if (!file.good())
- {
- std::cerr << "read " << engine_name << " error!" << std::endl;
- assert(false);
- }
- size_t size = 0;
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- char *serialized_engine = new char[size];
- assert(serialized_engine);
- file.read(serialized_engine, size);
- file.close();
- *runtime = createInferRuntime(gLogger);
- assert(*runtime);
- *engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
- assert(*engine);
- *context = (*engine)->createExecutionContext();
- assert(*context);
- delete[] serialized_engine;
- }
- void prepare_buffer(ICudaEngine *engine, float **input_buffer_device, float **output_buffer_device, float **output_seg_buffer_device,
- float **output_buffer_host,float **output_seg_buffer_host ,float **decode_ptr_host, float **decode_ptr_device, std::string cuda_post_process) {
- assert(engine->getNbBindings() == 3);
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine->getBindingIndex(kInputTensorName);
- const int outputIndex = engine->getBindingIndex(kOutputTensorName);
- const int outputIndex_seg = engine->getBindingIndex("proto");
- assert(inputIndex == 0);
- assert(outputIndex == 1);
- assert(outputIndex_seg == 2);
- // Create GPU buffers on device
- CUDA_CHECK(cudaMalloc((void **) input_buffer_device, kBatchSize * 3 * kInputH * kInputW * sizeof(float)));
- CUDA_CHECK(cudaMalloc((void **) output_buffer_device, kBatchSize * kOutputSize * sizeof(float)));
- CUDA_CHECK(cudaMalloc((void **) output_seg_buffer_device, kBatchSize * kOutputSegSize * sizeof(float)));
-
- if (cuda_post_process == "c") {
- *output_buffer_host = new float[kBatchSize * kOutputSize];
- *output_seg_buffer_host = new float[kBatchSize * kOutputSegSize];
- } else if (cuda_post_process == "g") {
- if (kBatchSize > 1) {
- std::cerr << "Do not yet support GPU post processing for multiple batches" << std::endl;
- exit(0);
- }
- // Allocate memory for decode_ptr_host and copy to device
- *decode_ptr_host = new float[1 + kMaxNumOutputBbox * bbox_element];
- CUDA_CHECK(cudaMalloc((void **)decode_ptr_device, sizeof(float) * (1 + kMaxNumOutputBbox * bbox_element)));
- }
- }
- void infer(IExecutionContext &context, cudaStream_t &stream, void **buffers, float *output, float *output_seg,int batchsize, float* decode_ptr_host, float* decode_ptr_device, int model_bboxes, std::string cuda_post_process) {
- // infer on the batch asynchronously, and DMA output back to host
- auto start = std::chrono::system_clock::now();
- context.enqueue(batchsize, buffers, stream, nullptr);
- if (cuda_post_process == "c") {
- std::cout << "kOutputSize:" << kOutputSize <<std::endl;
- CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchsize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost,stream));
- std::cout << "kOutputSegSize:" << kOutputSegSize <<std::endl;
- CUDA_CHECK(cudaMemcpyAsync(output_seg, buffers[2], batchsize * kOutputSegSize * sizeof(float), cudaMemcpyDeviceToHost, stream));
- auto end = std::chrono::system_clock::now();
- std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
- } else if (cuda_post_process == "g") {
- CUDA_CHECK(cudaMemsetAsync(decode_ptr_device, 0, sizeof(float) * (1 + kMaxNumOutputBbox * bbox_element), stream));
- cuda_decode((float *)buffers[1], model_bboxes, kConfThresh, decode_ptr_device, kMaxNumOutputBbox, stream);
- cuda_nms(decode_ptr_device, kNmsThresh, kMaxNumOutputBbox, stream);//cuda nms
- CUDA_CHECK(cudaMemcpyAsync(decode_ptr_host, decode_ptr_device, sizeof(float) * (1 + kMaxNumOutputBbox * bbox_element), cudaMemcpyDeviceToHost, stream));
- auto end = std::chrono::system_clock::now();
- std::cout << "inference and gpu postprocess time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
- }
- CUDA_CHECK(cudaStreamSynchronize(stream));
- }
- bool parse_args(int argc, char **argv, std::string &wts, std::string &engine, std::string &img_dir, std::string &sub_type,
- std::string &cuda_post_process, std::string& labels_filename, float &gd, float &gw, int &max_channels)
- {
- if (argc < 4)
- return false;
- if (std::string(argv[1]) == "-s" && argc == 5) {
- wts = std::string(argv[2]);
- engine = std::string(argv[3]);
- sub_type = std::string(argv[4]);
- if (sub_type == "n") {
- gd = 0.33;
- gw = 0.25;
- max_channels = 1024;
- } else if (sub_type == "s") {
- gd = 0.33;
- gw = 0.50;
- max_channels = 1024;
- } else if (sub_type == "m") {
- gd = 0.67;
- gw = 0.75;
- max_channels = 576;
- } else if (sub_type == "l") {
- gd = 1.0;
- gw = 1.0;
- max_channels = 512;
- } else if (sub_type == "x") {
- gd = 1.0;
- gw = 1.25;
- max_channels = 640;
- } else{
- return false;
- }
- } else if (std::string(argv[1]) == "-d" && argc == 6) {
- engine = std::string(argv[2]);
- img_dir = std::string(argv[3]);
- cuda_post_process = std::string(argv[4]);
- labels_filename = std::string(argv[5]);
- } else {
- return false;
- }
- return true;
- }
- int main(int argc, char **argv) {
- cudaSetDevice(kGpuId);
- std::string wts_name = "";
- std::string engine_name = "";
- std::string img_dir;
- std::string sub_type = "";
- std::string cuda_post_process = "";
- std::string labels_filename = "../coco.txt";
- int model_bboxes;
- float gd = 0.0f, gw = 0.0f;
- int max_channels = 0;
- if (!parse_args(argc, argv, wts_name, engine_name, img_dir, sub_type, cuda_post_process, labels_filename, gd, gw, max_channels)) {
- std::cerr << "Arguments not right!" << std::endl;
- std::cerr << "./yolov8 -s [.wts] [.engine] [n/s/m/l/x] // serialize model to plan file" << std::endl;
- std::cerr << "./yolov8 -d [.engine] ../samples [c/g] coco_file// deserialize plan file and run inference" << std::endl;
- return -1;
- }
- // Create a model using the API directly and serialize it to a file
- if (!wts_name.empty()) {
- serialize_engine(wts_name, engine_name, sub_type, gd, gw, max_channels);
- return 0;
- }
- // Deserialize the engine from file
- IRuntime *runtime = nullptr;
- ICudaEngine *engine = nullptr;
- IExecutionContext *context = nullptr;
- deserialize_engine(engine_name, &runtime, &engine, &context);
- cudaStream_t stream;
- CUDA_CHECK(cudaStreamCreate(&stream));
- cuda_preprocess_init(kMaxInputImageSize);
- auto out_dims = engine->getBindingDimensions(1);
- model_bboxes = out_dims.d[0];
- // Prepare cpu and gpu buffers
- float *device_buffers[3];
- float *output_buffer_host = nullptr;
- float *output_seg_buffer_host = nullptr;
- float *decode_ptr_host=nullptr;
- float *decode_ptr_device=nullptr;
- // Read images from directory
- std::vector<std::string> file_names;
- if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
- std::cerr << "read_files_in_dir failed." << std::endl;
- return -1;
- }
- std::unordered_map<int, std::string> labels_map;
- read_labels(labels_filename, labels_map);
- assert(kNumClass == labels_map.size());
- prepare_buffer(engine, &device_buffers[0], &device_buffers[1], &device_buffers[2], &output_buffer_host, &output_seg_buffer_host,&decode_ptr_host, &decode_ptr_device, cuda_post_process);
- // // batch predict
- for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
- // Get a batch of images
- std::vector<cv::Mat> img_batch;
- std::vector<std::string> img_name_batch;
- for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
- cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
- img_batch.push_back(img);
- img_name_batch.push_back(file_names[j]);
- }
- // Preprocess
- cuda_batch_preprocess(img_batch, device_buffers[0], kInputW, kInputH, stream);
- // Run inference
- infer(*context, stream, (void **)device_buffers, output_buffer_host, output_seg_buffer_host,kBatchSize, decode_ptr_host, decode_ptr_device, model_bboxes, cuda_post_process);
- std::vector<std::vector<Detection>> res_batch;
- if (cuda_post_process == "c") {
- // NMS
- batch_nms(res_batch, output_buffer_host, img_batch.size(), kOutputSize, kConfThresh, kNmsThresh);
- for (size_t b = 0; b < img_batch.size(); b++) {
- auto& res = res_batch[b];
- cv::Mat img = img_batch[b];
- auto masks = process_mask(&output_seg_buffer_host[b * kOutputSegSize], kOutputSegSize, res);
- draw_mask_bbox(img, res, masks, labels_map);
- cv::imwrite("_" + img_name_batch[b], img);
- }
- } else if (cuda_post_process == "g") {
- // Process gpu decode and nms results
- // batch_process(res_batch, decode_ptr_host, img_batch.size(), bbox_element, img_batch);
- // todo seg in gpu
- std::cerr << "seg_postprocess is not support in gpu right now" << std::endl;
- }
- }
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CUDA_CHECK(cudaFree(device_buffers[0]));
- CUDA_CHECK(cudaFree(device_buffers[1]));
- CUDA_CHECK(cudaFree(device_buffers[2]));
- CUDA_CHECK(cudaFree(decode_ptr_device));
- delete[] decode_ptr_host;
- delete[] output_buffer_host;
- delete[] output_seg_buffer_host;
- cuda_preprocess_destroy();
- // Destroy the engine
- delete context;
- delete engine;
- delete runtime;
- // Print histogram of the output distribution
- // std::cout << "\nOutput:\n\n";
- // for (unsigned int i = 0; i < kOutputSize; i++)
- //{
- // std::cout << prob[i] << ", ";
- // if (i % 10 == 0) std::cout << std::endl;
- //}
- // std::cout << std::endl;
- return 0;
- }
|